TU Graz 10.08.2020, 09:50 Uhr

Energieeffiziente AI-Systeme

Der hohe Energieverbrauch beim Lernen von künstlichen neuronalen Netwerken  ist eine der größten Hürden für den breiten Einsatz von Artificial Intelligence (AI), vor allem bei mobilen Anwendungen.
Die beiden TU Graz-Informatiker Robert Legenstein und Wolfgang Maass (v.l.) arbeiten an energieeffizienten AI-Systemen.

(Quelle: Lunghammer - TU Graz)
Ein Ansatz, um dieses Problem zu lösen ist, von Erkenntnissen über das menschliche Gehirn zu lernen: Dieses hat zwar die Rechenleistung eines Supercomputers, braucht mit 20 Watt aber nur ein Millionstel von dessen Energie. Verantwortlich dafür ist unter anderem die effiziente Informationsweitergabe zwischen den Neuronen im Gehirn: Diese senden dazu kurze, elektrische Impulse (Spikes) an andere Neuronen – um Energie zu sparen aber nur so oft, wie unbedingt notwendig.
Diese Funktionsweise hat sich eine Arbeitsgruppe rund um die beiden TU Graz-Informatiker Wolfgang Maass und Robert Legenstein bei der Entwicklung des neuen maschinellen Lernalgorithmus e-prop (kurz für e-propagation) zu eigen gemacht: Die Forschenden des Instituts für Grundlagen der Informationsverarbeitung, die auch Teil des europäischen Leuchtturmprojekts Human Brain Project sind, nutzen in ihrem Modell Spikes zur Kommunikation zwischen Neuronen in einem künstlichen neuronalen Netz. Die Spikes werden nur dann aktiv, wenn sie für die Informationsverarbeitung im Netzwerk gebraucht werden. Das Lernen ist für solche wenig aktiven Netzwerke eine besondere Herausforderung, da es längere Beobachtungen braucht um zu ermitteln, welche Neuronenverbindungen die Netzwerkleistung verbessern.


Das könnte Sie auch interessieren